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Abstract—Color images always exhibit a high correlation
between luma and chroma components. Cross component linear
model (CCLM) has been introduced to exploit such correlation
for removing redundancy in the on-going video coding standard,
i.e., versatile video coding (VVC). To further improve the
coding performance, this paper presents a deep learning based
intra chroma prediction method, termed as convolutional neural
network based chroma prediction (CNNCP). More specifically,
the process of chroma prediction is formulated to produce
the colorful version from available information input. CNNCP
includes two sub-networks for luma down-sampling and chroma
prediction, which are jointly optimized to fully exploit spatial
and cross component information. In addition, the outputs of
CCLM are adopted as chroma initialization for performance
enhancement, and the coding distortion level characterized by
quantization parameter is fed into the network to release the
negative affect from compression artifacts. To further improve
the coding performance, the competition is performed between
the conventional chroma prediction and CNNCP in terms of rate-
distortion cost with a binary flag signalled. The learned CNNCP
is incorporated into both video encoder and decoder. Extensive
experimental results demonstrate that the proposed scheme can
achieve 4.283%, 3.343%, and 4.634% bit rate savings for luma
and two chroma components, compared with the VVC test model
version 4.0 (VTM 4.0).

Index Terms—Deep learning, convolutional neural network,
chroma prediction, versatile video coding.

I. INTRODUCTION

RECENT years have witnessed wide applications of
videos in various fields, such as entertainment, security
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surveillance, and Virtual Reality (VR). The evolution of videos
in the past three decades can be summarized from the fol-
lowing aspects, i.e., High Definition (HD), High Frame Rate
(HFR), Multi-View Video (MVD) [1], High Dynamic Range
(HDR) [2] and Wide Color Gamut (WCG) [2]. The explosively
increasing video data, which pose a great challenge to the
data storage and transmission, require advanced video coding
algorithms to reduce the data volume and maintain the video
quality.

Although a couple of video coding standards have been
issued in the past 30 years, such as H.264/Advanced Video
Coding (AVC) [3] and High Efficiency Video Coding (HEVC)
[4], the compression ratio still cannot catch the increasing
of video data. In April 2018, the new standard was formally
named as Versatile Video Coding (VVC) [5] by Joint Video
Experts Team (JVET), which aims to adapt to new applica-
tions, such as HDR and VR, and improve the performance of
its predecessor, i.e., HEVC.

Regarding VVC, the coding performance has been signif-
icantly improved when compared to HEVC. Almost all the
modules in VVC have been improved with new coding tools,
including the block partition, intra prediction, motion estima-
tion/componsetion, transform. In particular, for the block par-
tition, the default Coding Tree Unit (CTU) has been enlarged
from 64×64 to 128×128 [5]. Besides the quad-tree partition,
the binary and ternary tree partitions are included as well [5].
More specifically, the quad-tree partition is firstly performed,
and then each node of quad-tree can be further partitioned by
binary tree with two identical units or by ternary tree with
three units. Moreover, horizontal and vertical directions are
performed for the binary and ternary tree partitions. For the
intra prediction, 32 more angular modes are included for luma
component, which are used to adapt to the diverse contents and
different block sizes. In addition, multi-line neighboring pixels
are utilized as reference for prediction [6]. For the motion
estimation/compensation, many techniques are employed. The
coding tool of Intra Block Copy (IBC) [7], which is only used
for HEVC Screen Content Coding (SCC) extension, has been
adopted in VVC. Besides the traditional motion compensa-
tion, Affine Motion Compensation (AMC) methods with 4-
parameter and 6-parameter [8] are utilized to handle the mo-
tion of rotation, zooming, and shearing. In addition, Combined
Inter/Intra Prediction (CIIP) [9] and Triangle Prediction Mode
(TPM) [9] are proposed to improve the prediction. Regarding
the transform, the maximum transform size has been upgraded
to 128×128 for luma component as the increased size of CTU.
With multiple transform types of DCT/DST, three transform
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(a) Gray image (b) Color image

Fig. 1. Gray and color images.

methods are designed, i.e., intra sub-partitioning [10], sub-
block transform [10] and shape adaptive implicit transform
selection [10].

In recent years, deep learning based video coding has
become more and more popular because of its promising per-
formance. The modules in video coding, including inter/intra
prediction, motion compensation, and in-loop filtering/post-
processing, have been improved with different neural networks
[11][12]. For the module of inter/intra prediction, an enhanced
bi-prediction scheme [13] was presented with Convolutional
Neural Network (CNN) to improve the coding performance,
which can directly infer the predictive signals in a data driven
manner. An efficient inter prediction scheme by introducing
the deep virtual reference frame was proposed in [14], which
serves as the reference in the temporal redundancy removal
process. Li et al. [15] proposed a deep learning method for
intra prediction, where a fully connected network was learned
for an end-to-end mapping from neighboring reconstructed
pixels to the to-be-coded block. The process of intra prediction
was modeled as an inpainting task in [16], where the Genera-
tive Adversarial Network (GAN) was adopted to intelligently
remove the spatial redundancy. In [17], the chroma prediction
was improved in HEVC with the hybrid neural network of
CNN and fully connected network. For the module of motion
compensation, the fractional-pixel motion compensation was
formulated as an inter-picture regression problem for both uni-
directional and bi-directional motion compensations in video
coding [18], where the CNN model was adopted. In [19],
a one-for-all fractional interpolation method was presented
with a Grouped Variation CNN (GVCNN), which can handle
different Quantization Parameter (QP) settings and generate all
sub-pixel positions at one sub-pixel level. For the module of
in-loop filtering/post-processing, a novel quality enhancement
method was presented by using a Multi-reconstruction Recur-
rent Residual Network (MRRN) [20], where a modified recur-
sive residual structure was designed to capture the multi-scale
similarity of compression artifacts. Jia et al. [21] designed
a structure of CNN model from multiple dimensions for loop
filtering. Each CTU was treated as an independent region, such
that the content-aware multi-model filtering mechanism was
performed with different CNN models for different regions.

In this paper, we focus on the chroma prediction with
neural network to further remove the redundancy in the YCbCr
color space. The main contributions of this paper are listed as
follows.

1) The procedure of chroma prediction is formulated to
transfer from gray version to colorful version with avail-
able information input, in which the CNN model termed

as CNN based Chroma Prediction (CNNCP) is utilized,
such that the current to-be-coded chroma block can be
better predicted.

2) Two sub-networks are equipped in CNNCP, i.e., luma
down-sampling and chroma prediction, and they are
jointly performed for fully exploiting the spatial and
cross component information. In addition, the results
of CCLM are adopted as chroma initialization, and the
coding distortion level characterized by QP is fed into the
network to eliminate the negative affect from compression
artifacts.

3) Combining with the conventional and CNNCP, the video
encoder and decoder are redesigned. The Rate-Distortion
Optimization (RDO) is performed to select the better one
between the conventional chroma prediction and CNNCP
with one additional flag signalled to the decoder.

The remainder of this paper is organized as follows. Section
II introduces the related works. The motivation and problem
formulation are described in Section III. Section IV presents
the proposed CNNCP for intra coding. The experimental
results and analyses are discussed in Section V. Section VI
concludes this paper.

II. RELATED WORKS

A. Image Colorization

Image colorization is a classical problem in the field of
computer vision, which aims to make it colorful from the
gray version, as shown in Figs. 1(a) and 1(b). In [22], a
colorization based coding method was proposed for image
compression, where at the decoder side the chroma pixels
could be directly reconstructed by the colorization method.
Bugeau et al. [23] modeled the problem of image colorization
as selecting the best color from a set of color candidates
and a variational approach was proposed. In [24], an example
based image colorization method was presented by exploiting
a new locality consistent sparse representation. A luma-guided
diffusion based colorization framework in the YCbCr space
was proposed [25], making it a valuable tool for compression.
Given a reference color image and a destination grayscale
image, an automatic colorization algorithm [26] was proposed
to transfer color information from the reference image to the
destination image.

The performance of image colorization has been signifi-
cantly improved with deep learning. Cheng et al. [27] ensem-
bled multiple neural networks to obtain better performance
than an individual one. In [28], a fully automatic image col-
orization method using deep neural networks was presented,
which aims to minimize users’ effort and the dependence on
the reference color images. Combining global priors and local
priors, the CNN based image colorization architecture [29]
was designed, where the training loss was jointly represented
by colorization loss and classification loss, aiming to adapt to
the contents. In [30], a recurrent framework was presented to
guide the colorization of every frame in a video from a given
reference image.

Most of these image colorization methods are only per-
formed with grayscale information, leading to the fact that
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(a) R component (b) G component (c) B component (d) Y component (e) Cb component (f) Cr component

(g) H component (h) S component (i) V component (j) L component (k) a component (l) b component

Fig. 2. Fig. 1(b) represented in RGB, YCbCr, HSV, and Lab color spaces. The individual components of each color space are represented in jet colormap.

any visually pleasing outputs could be acceptable. However, it
is challenging for video coding which aims to deliver high
fidelity visual signals. As such, it is desirable to train an
appropriate colorization model in the video coding domain
of applications.

B. Chroma Prediction

As shown in Figs. 2(a) - 2(l), the correlations in RGB,
YCbCr, HSV, and Lab color spaces are illustrated. The in-
dividual components of each color space are represented in
jet colormap for better visualization. We can easily observe
that these three components in every color space are highly
correlated. Such redundancy can be further exploited for
performance improvement in the field of data compression.

To remove the redundancy in the YCbCr color space, the
Cross Component Linear Model (CCLM) [31] was derived
with the hypothesis that the pixels of luma and chroma in a
coding block can be represented by a simple linear function.
Furthermore, several methods are presented to improve the
performance of CCLM, including Multi-Model Linear Model
(MMLM) [32], Multi-Filter Linear Model (MFLM) [32],
and Multi-Directional Linear Model (MDLM) [33]. They all
achieve significant coding gains. Additionally, two chroma
components (Cb and Cr) can also be represented by another
linear model. In VVC, the CCLM has been adopted for chroma
prediction. The two parameters of CCLM model are derived
from the neighboring reconstructed luma and chroma pixels.
To further improve the performance of CCLM, MDLM has
been proposed, which consists of left (MDLM L) and top
(MDLM T) versions. In analogous to the luma component,
the angular prediction is also performed in chroma component.
The difference lies in that only limited angular modes are
adopted, i.e., Planar, DC, Vertical, and Horizontal. Moreover,
Derived Mode (DM) has been used to share the mode of luma
component. As a result, there are 8 modes in total for chroma
prediction in VVC, including Planar, DC, Vertical, Horizontal,
DM, CCLM, MDLM L, and MDLM T. In addition, dual tree
has been used in VVC for intra luma and chroma prediction,
which means that the luma and chroma components can have
different partition sizes in a CTU.

Most of the existing works concentrate on the cross com-
ponent redundancy removal with a linear model in case of
residual or pixel values. Kim et al. [34] presented a Cross
Component Prediction (CCP) method, in which the chroma
residual signal was predicted from the luma residual signal.
This work was extended in [35], such that Cb residual can be
employed to predict Cr residual. Khairat et al. [36] exploited
the correlation between residual components in 4:4:4 format
with CCP, and predicted the second and third components
from the first component in RGB and YCbCr color spaces.
In [37], the template matching was performed for chroma
prediction by using the reconstructed luma block. Zhang et al.
[38] investigated three linear models for the representation of
luma and chroma components, which significantly improved
the coding performance of HEVC. In [39], chroma from luma
prediction was performed in AV1.

Although these linear models, CCLM, MFLM, MMLM, and
MDLM, have achieved coding gain to some extent, they are all
manually designed, which limit the performance improvement
for diverse videos. Sophisticated algorithms are desired to be
developed for the representation from luma to chroma.

To further exploit the efficient representation from luma
to chroma, the neural networks have been adopted. In [40],
the separate networks were utilized to perform luma and
chroma prediction, where the neighboring information and
cross component information were involved. Blanch et al. [41]
presented a neural network architecture for cross component
intra prediction, in which an attention module was employed
for learning spatial relations. In the literature [17], it presented
a hybrid neural network for chroma prediction in HEVC,
but it still can be further improved. Different from literature
[17], this work has been applied to the next generation video
coding standard, i.e., VVC. In particular, the luma down-
sampling method with neural network has been considered
instead of the traditional method used in [17] to improve
the performance of chroma prediction. In addition, the result
of CCLM is utilized as chroma initialization and the coding
distortion level characterized by QP is included as the network
input to eliminate the negative affect of compression artifacts.
To fully exploit the spatial and cross component information,
the joint luma down-sampling and chroma prediction networks
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(a) Example 1

(b) Example 2

Fig. 3. Illustrations of correlations between luma and chroma components in case of YCbCr 4:4:4, 4:2:2, and 4:2:0 formats.

Fig. 4. Problem formulation for two chroma components prediction in case
of YCbCr 4:2:0 format. f(·) is a function mapping the available information to
the chroma information. The chroma component in the bottom-right of color
version is predicted.

are performed.

III. MOTIVATION AND PROBLEM FORMULATION

In video coding, the visual signals are mainly represented
in the YCbCr color space. With the hypothesis of linear
correlation between luma and chroma components in a coding
block, several linear models for chroma prediction have been
incorporated into the VVC. Due to the diverse contents,
one linear model cannot handle all the cases. Two examples
with different YCbCr formats are illustrated in Fig. 3, which
indicate that the relationship between luma and chroma com-
ponents is too complicated to be characterized with a linear
model. Two linear models are developed in MMLM [32],

C ′ =

{
a1Y + b1 Y ≤ T
a2Y + b2 Y > T

, (1)

where C ′ is the predicted chroma pixel, Y is the luma pixel,
and T is a pre-defined threshold. a1, b1 and a2, b2 are model
parameters. However, for the case of Fig. 3(b), it is still unable
to represent this correlation with two linear models. This is a
limitation.

Inspired by MMLM, we aim to predict the two chroma
components simultaneously with a neural network, where the
models are learned in a data-driven manner instead of a hand-
crafted way. It is also expected that the networks are equipped
with the capacity to learn the natural scene statistics regarding
the color information, such that the coding information can be
further improved by incorporating the prior information. The
spatial information, denoted as local prior, has been adopted.
The coding distortion is unavoidable in the lossy encoder, also
brings obstacles to perform chroma prediction. Therefore, the

impact of compression artifact is supposed to be considered.
As shown in Fig. 4, the problem of chroma prediction in
case of YCbCr 4:2:0 format is formulated. The to-be-predicted
chroma blocks are located at the bottom-right, while the
available information are higher resolution of reconstructed
luma blocks (cross component information), and the neigh-
boring reconstructed chroma blocks (spatial information). The
predicted chroma component, C′, can be formulated by,

C′ = f(Y,C,D), (2)

where f(·) is a function mapping the available information to
the chroma information, Y is the reconstructed luma compo-
nent, C is the chroma component, the above-left, above, and
the left sub-blocks are the neighboring reconstructed chroma
information, the sub-blocks located at the bottom-right are
required to be predicted. Since the available luma and chroma
components are distorted, the information of coding distortion
level D is supposed to be included to eliminate the negative
affect from compression artifacts. It is worth mentioning this
formulation can be employed to other color spaces for data
compression.

IV. PROPOSED CNN BASED CHROMA PREDICTION FOR
INTRA VERSATILE VIDEO CODING

A. Framework of CNN based Chroma Prediction

The framework of CNNCP is illustrated in Fig. 5. It consists
of two neural networks, i.e., luma down-sampling network and
chroma prediction network. Since the human visual system is
more sensitive to luma than chroma, the YCbCr 4:2:0 format is
frequently used in video coding, such that the luma component
with size of 4N × 4N is firstly down-sampled by the luma
down-sampling network to the size of 2N × 2N as same as
the chroma component in this framework. Combining with the
coding distortion level and neighboring chroma blocks, the
down-sampled luma component will be fed into the chroma
prediction network. To make the prediction more accurate, the
results of CCLM are generated as the chroma initialization.
The outputs of chroma prediction network are two chroma
components with size of 2N × 2N . The blocks located at the
bottom-right will be cropped as the final chroma prediction
results with size of N ×N .

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 28,2020 at 14:25:30 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.3035356, IEEE
Transactions on Circuits and Systems for Video Technology

ZHU et al.: DEEP LEARNING-BASED CHROMA PREDICTION FOR INTRA VERSATILE VIDEO CODING 5

Fig. 5. Framework of proposed Convolutional Neural Network based Chroma Prediction (CNNCP) for YCbCr 4:2:0 format. This framework can also be
applied to other YCbCr formats and even other color spaces with associated hyper-parameters.

In this framework, the functions of luma down-sampling
and chroma prediction networks are similar to MFLM and
MMLM, which are used to produce more down-sampled luma
components and mapping models. The difference lies in that
these two neural networks are learned from large-scale data,
while the MMLM and MFLM are manually designed. To some
extent, the chroma initialization with CCLM results will accel-
erate the training and enhance the prediction performance. The
distortion information is characterized by QP, which indicates
the level of compression artifacts injected into the available
information. It means that the pixel values in the D block are
filled with the identical QP value. As such, it will eliminate
the negative affect of compression artifacts for performing the
chroma prediction.

The hyper-parameters of luma down-sampling and chroma
prediction networks are illustrated in Tables I and II. For the
luma down-sampling network, there are 6 convolutional layers,
and their kernel sizes are all 3 × 3. The stride of the second
layer is 2 and that of others is 1. Except for the last layer,
the outputs of convolutional layers are 16 feature maps and
the activation function is ReLU. The output and activation
function of last layer are 16 down-sampled luma components
and Tanh, respectively. For the chroma prediction network,
there are 20 convolutional layers in total. The kernel sizes of
them are all 3×3. From 1st to 17th convolutional layers, they
output 128 feature maps. For the last layer, the outputs are
Cb and Cr components. In summary, we employ the encoder-
decoder structure and parameter settings from [42] and [43].
Then, we increase the number of feature maps to 128 to
improve learning ability and set batch size as 128 to improve
the robustness of model training. Finally, to solve the memory
overflow problem while training this model in our GPU, the
high level feature maps (18th and 19th layers) are reduced to
16 since they are relatively less important.

In addition, this framework can also be applied to other
YCbCr formats and even other color spaces. The hyper-
parameters of network are supposed to be changed according
to the associated YCbCr format and color space. For example,
the stride of the second layer in luma down-sampling network
should be set as 1 for YCbCr 4:4:4 format. As such, the
luma down-sampling network is able to provide more luma
information. For the case of YCbCr 4:2:2 format, the luma

TABLE I
HYPER-PARAMETERS OF THE LUMA DOWN-SAMPLING NETWORK.

# Type Kernel Stride Outputs Activation
01

Conv. 3× 3

1

16 ReLU
02 2
03

104
05
06 16 Tanh

TABLE II
HYPER-PARAMETERS OF THE CHROMA PREDICTION NETWORK.

# Type Kernel Stride Outputs Activation
01

Conv.

3× 3

1

128
ReLU

02 2
03 1
04 2
05 1
06 2
07 1
08 2
09 110
11 DeConv. 1/2
12 Conv. 1
13 DeConv. 1/2
14 Conv. 1
15 DeConv. 1/2
16 Conv. 1
17 DeConv. 1/2
18

Conv. 1 1619
20 2 Tanh

down-sampling can be only performed in the vertical or
horizontal direction.

B. Adaptation to Variable Block Size in VVC

As mentioned in the Section I, the CTU size is 128× 128
and the quad-tree plus binary- and ternary-tree partitions have
been adopted in VVC. As a result, there are symmetric and
asymmetric coding units with different sizes. How to design
an efficient scheme to embrace the framework of chroma
prediction for video coding becomes a challenging problem.
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TABLE III
CANDIDATE SCHEME COMPARISONS.

Item Proposed Scheme 1st Alternative Scheme 2nd Alternative Scheme

Model for Block Parition 128× 128
128× 128, 64× 64, One block partition,

32× 32, 16× 16, 8× 8 one model
Model Storage (about 9.17 MB/model) 1 CNNCP model 5 CNNCP models 25 CNNCP models

Operation at the Encoder Side 1 operation/CTU 341 operations/CTU 961 operations/CTU
Operation at the Decoder Side (Upper Bound) 1 operation/CTU 256 operations/CTU 256 operations/CTU

In this paper, N is fixed as 64 in CNNCP, which means
that one CNNCP model is only applied for 128× 128 block,
such that the blocks smaller than 128 × 128 will copy the
co-located prediction. The advantages of proposed scheme are
that VVC is performed with the unit of CTU (128×128 block),
such that the neighboring reconstructed CTUs can be easily
collected. Moreover, the technique of dual tree provides the
cross component information before chroma prediction in a
CTU. Only one CNNCP model will be stored in the memory.
For every CTU, the CNNCP is only performed once. The
disadvantage is that if only a small block selects CNNCP in
a CTU, the CNNCP will be performed with the unit of CTU
at the decoder side.

In addition, there are two alternative schemes. For the first
alternative scheme, five CNNCP models would be only applied
for symmetric blocks, 128×128, 64×64, 32×32, 16×16 and
8×8 blocks, which means N = 64, 32, 16, 8, 4 in CNNCP, the
blocks smaller than the block of 128× 128, 64× 64, 32× 32,
16 × 16, or 8 × 8 will copy the co-located prediction from
the associated block. Regarding the second alternative scheme,
for every type of block partition, there is a CNNCP model,
including the asymmetric partitions, 128×128, 128×64, 128×
32, . . . , 16×8, 8×8, with 25 types of block partitions in total.

In the first alternative scheme, the spatial information cannot
be easily collected for a block smaller than CTU because of
the recursive partition manner. The final luma and chroma
reconstructions will be determined after all blocks compar-
isons according to the RD cost. The number of the CNNCP
models depends on the number of type of symmetric block
partitions. Here, five CNNCP models are required for storage,
i.e., 128 × 128, 64 × 64, 32 × 32, 16 × 16 and 8 × 8, which
are designed for symmetric blocks. It is time consuming to
train 5 CNN models. For every symmetric block size, the
CNNCP will be performed to achieve the minimum cost at
the encoder side. The number of CNNCP operation at the
encoder side equals to the total number of block partitions,
i.e., 1 + 4 + 16 + 64 + 256 = 341. At the decoder side, the
upper bound number of operation is that all these blocks are
partitioned with size of 8×8, and they all select CNNCP, which
can be calculated as follows, (128 ÷ 8) × (128 ÷ 8) = 256.
As same as the proposed scheme, for an asymmetric block,
the pixel values will be directly copied from the associated
symmetric case at the co-located location. For example, an
asymmetric block with size of 16×8 will copy the pixel
values from the associated 16×16 block, which is produced
by CNNCP.

The difference between the first and second alternative
schemes lies in that for every type of block partitions, there

is a CNNCP model, not only for the symmetric blocks, but
also for asymmetric blocks. As a result, more CNNCP models
are required, and more operations will be conducted at the
encoder side. The available information (spatial and cross
component information) are symmetric, the changes should be
made accordingly for the case of asymmetric blocks. As such
the specific hyper-parameters for the asymmetric cases are
required to be designed. In addition, the time cost of networks
training is expensive.

The advantages and disadvantages of these three candidate
schemes are compared, which are summarized in Table III.
The proposed block scheme is finally used in this paper
because of the benefits of simple implementation, less CNNCP
models for storage, less time cost of network training, and less
operations at the encoder and decoder sides. In the following
experimental section, the parameter of N is fixed and set as
64 in the CNNCP.

C. Loss Function

There are two networks in CNNCP, i.e., down-sampling and
chroma prediction networks. For the down-sampling network,
the loss function can be represented by,

L1 = ||F1(Y)− Y∗||2, (3)

where Y is the luma component with size of 4N × 4N , F1(·)
is the down-sampling network, Y∗ is the ground truth of luma
component with size of 2N × 2N . For the chroma prediction
network, the loss function is represented by

L2 = λ||Cb′ − Cb∗||2 + (1− λ)||Cr′ − Cr∗||2, (4)

where λ ∈ [0, 1] is a weight, Cb′ and Cr′ are cropped from
the outputs of chroma prediction network with size of N×N ,
Cb∗ and Cr∗ are the ground truth of two chroma components
with size of N ×N .

Cb′,Cr′ = F2(F1(Y),D,Cb,Cr), (5)

where F2(·) is the chroma prediction network, F1(Y) is the
down-sampled luma component with size of 2N × 2N , D is
the map of coding distortion level characterized by QP with
size of 2N × 2N , Cb and Cr are the neighboring chroma
information plus CCLM results as initialization with size of
2N × 2N .

D. Neural Network Training

The training dataset consists of 886 images from UCID
database [44] and 900 images from DIV2K database [45].
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(a) Individual (b) Alternate (c) Joint (proposed)

Fig. 6. Three candidate training strategies.

The resolution of images from UCID database is 512×384.
The resolution of images from DIV2K database is 2K (from
2040×648 to 2040×2040). They are encoded by the VVC
Test Model (VTM) version 4.0 [46] with QPs {22, 27, 32,
37} under All Intra (AI) configuration. During the process
of encoding, the training samples are collected, including the
ground truth. The blocks located at the bottom-right of two
chroma components are required to be predicted, which is
replaced by the ground truth in the training pair. Due to the
different resolutions of images in DIV2K, they are resized
to 2048 × 1536 and packed as a sequence for coding. To
collect more patches, the data augmentation is performed,
i.e., the images are rotated in four directions. In UCID
database, the number of patches can be calculated as follows,
886×(512/128−1)×(384/128−1)×4×4 = 85056. In DIV2K
database, the number of patches can be calculated as follows,
900× (2048/128− 1)× (1536/128− 1)× 4× 4 = 2376000.
Therefore, there are 2461056 training patches in total. 128000
of them will be used for validation.

Generally speaking, for these two networks, there are three
candidate training strategies, i.e., individual, alternate, and
joint, which are illustrated in Fig. 6. For individual training,
the luma down-sampling network is firstly trained. After
the luma down-sampling network is available, the chroma
prediction network is trained. At last, they are combined
together for the chroma prediction. This strategy makes the
training relatively easy and can be conducted in parallel, but
it may not achieve the best performance because the training
of these two networks is individual, and global optimum is
difficult to be achieved. For alternate training, the training of
these two networks will be conducted one by one until both
converge. It means that in a training epoch, down-sampling
network is firstly trained, then the parameters of it will be
fixed to generate down-sampled luma component for chroma
prediction network training. In the next training epoch, this
procedure will be re-called. The alternate training will finish
when it reaches the defined number of epochs or converge.
This training strategy may achieve the better performance, but
its training will become time consuming because it is difficult
to reach converge. It is worth mentioning that for individual
and alternate training strategies, it is difficult to determine
the ground truth of down-sampled luma. For joint training, it
does not care the performance of luma down-sampling, which
focuses on performance of chroma prediction. More accurate
the chroma prediction, more coding gains can be achieved.
During the training, the loss L1 is ignored, the parameters
of luma down-sampling network and chroma prediction are

(a) Video encoder

(b) Video decoder

Fig. 7. Proposed method incorporated in the video codec for chroma coding.

updated simultaneously. After the above discussion and anal-
ysis, the third training strategy is adopted in this paper due
to its benefits of global optimum, easy converge and potential
performance.

In this paper, the Tensorflow package is utilized for net-
works training on NVIDIA GeForce GTX 1080 Ti GPU with
AdamOptimizer. The batch size and the learning rate are set
as 128 and 1× 10−4, respectively. During training, the value
of λ in Eq. (4) is set as 0.5, as the Cb component is the same
important as the Cr component.

E. Incorporation to the VVC Codec

In VVC, the technique of dual tree has been adopted, which
means that intra luma and chroma components are separately
encoded in a CTU. They can have different partition sizes.
The luma component will be firstly processed and then the
two chroma components. As such, the reconstructed luma
component can be directly utilized as the cross component
information. The proposed CNNCP can be feasibly incorpo-
rated into the video codec, as shown in Fig. 7.

At the encoder side, the conventional chroma prediction
(including angular prediction, CCLM, MDLM) and CNNCP
are both performed. Then the selection process is conducted
based on RDO, such that the strategy with the minimum RD
cost will be selected. One additional binary flag is adopted
to indicate which strategy is selected, i.e., conventional or
CNNCP. This flag is signalled in the bitstream. This process
can be represented by

m∗ = arg min
m
{Dm + λ0(Rm +R

′

m)}, (6)

where m is the chroma prediction strategy, i.e., conventional
chroma prediction (including angular prediction, CCLM,
MDLM) or CNNCP. Dm is the distortion, Rm is the coding
bit of residue and other information, R

′

m is the coding bit of
the binary flag. λ0 is the Lagrange Multiplier, which balances
the coding distortion and bits. It is worth mentioning that the
CNNCP is only performed at the unit of CTU. For the blocks
smaller than CTU, the copying operation will be performed
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(a) Original (b) Without Chroma (c) CCLM [31] (d) CIC [48] (e) Proposed CNNCP

Fig. 8. Chroma prediction performance comparison with images from VVC sequences, and the blocks located at the bottom-right are predicted. From top to
bottom, the sequence indicates ParkRunning3, NebutaFestival, RaceHorsesC, and BQMall, respectively. The PSNR values are illustrated in Table IV.

TABLE IV
CHROMA PREDICTION PERFORMANCE COMPARISON IN TERMS OF PSNR.

[UNIT: DB]

Sequence CCLM[31] CIC[48] CNNCP
Cb Cr Cb Cr Cb Cr

ParkRunning3 16.97 14.21 18.33 17.38 22.97 23.27
NebutaFestival 20.73 20.74 16.77 16.35 37.22 39.75
RaceHorcesC 15.89 19.90 18.34 21.31 36.58 34.90

BQMall 25.35 26.00 27.50 29.89 36.57 36.81
AVERAGE 19.74 20.21 20.24 21.23 33.33 33.68

directly. The benefits have been discussed in detail in the
last subsection. Because N equals to 64 in CNNCP, the
spatial information fed to the network is absent for the blocks
(128× 128) located at the first row and column, such that the
outputs of CNNCP are manually set as half of the largest pixel
value, i.e., b(2k − 1)/2 + 0.5c, where k is the bit depth, and
bc is the floor operation.

At the decoder side, the flag will be decoded firstly. In
a CTU, if one of the decoded flags is 1, CNNCP will be
performed with the inputs of spatial and cross component
information. In analogous to the encoder, the copying oper-
ation will be employed to the blocks smaller than CTU if
the strategy of CNNCP has been used. For the above and left
boundaries, if the CNNCP is selected, the blocks are filled with
the value of b(2k − 1)/2 + 0.5c. More blocks select CNNCP,
more decoding time may be consumed.

V. EXPERIMENTAL RESULTS AND ANALYSES

In this section, experiments are conducted on the platform
of VTM 4.0 [46], in which the proposed CNNCP has been
implemented in both the video encoder and decoder. The
workstation equipped with the Intel Core i7-6950X CPU,
64GB memory, Windows 10 Enterprise 64-bit operating sys-
tem, is used in our experiments. The GPU is only activated
for networks training, while the CPU is used for encoding
and decoding. The original VTM 4.0 is utilized as the anchor
for RD performance comparison. The RD performance is
measured by Bjøntegaard Delta Bit Rate (BD-BR) [47], and
the negative value implies the RD performance improvement
and vice versa. We focus on high resolution of videos that the
sequences of Class D are not used.

A. Chroma Prediction Performance Comparison

Firstly, the results of chroma prediction are compared with
two approaches, i.e., CCLM, and Colorful Image Colorization
(CIC) [48]. CCLM is a simple linear model, which has been
adopted in VVC. CIC is a deep learning based scheme, where
the CNN has been used to generate the colorful information
from the gray information. The values of PSNR are also
calculated with respect to the original in case of Cb and
Cr components. Twenty images are randomly selected from
Imagenet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) database [49]. To adapt to the scenario of
block based coding, blocks with size of 256×256 are collected
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TABLE V
PERFORMANCE EVALUATION IN TERMS OF BD-BR WITH QPS {22, 27, 32, 37}. [UNIT: %]

Class Sequence
CNNCP + CCLM CNNCP + MMLM + MFLM + CCLM CNNCP + MDLM + CCLM

vs. CCLM[31] vs. MMLM[32] + MFLM[32] + CCLM vs. MDLM[33] + CCLM
Y U V YUV Y U V YUV Y U V YUV

Tango2 -4.397 -1.562 -1.857 -3.966 -4.817 -3.571 1.914 -4.418 -4.155 0.436 1.323 -3.731
FoodMarket4 -9.522 -4.086 -2.799 -8.304 -8.908 -2.457 -4.273 -7.975 -9.309 -3.378 -2.178 -7.794

Campfire -0.052 0.185 -0.107 -0.025 0.089 -0.227 0.064 0.042 0.029 0.222 0.242 0.077
A CatRobot1 -9.006 -11.32 -8.023 -9.441 -8.180 -5.779 -6.208 -7.905 -8.724 -9.846 -6.638 -8.999

DaylightRoad2 -2.314 3.853 -2.109 -2.165 -4.438 6.150 -2.504 -3.956 -2.184 4.564 -2.338 -2.063
ParkRunning3 -15.16 -12.88 -13.61 -14.35 -20.10 -17.23 -17.95 -18.98 -15.03 -12.44 -12.96 -14.03
MarketPlace -3.249 0.000 5.410 -2.716 -4.156 -2.836 2.426 -3.833 -3.170 1.182 6.637 -2.538
RitualDance 0.041 -0.412 0.311 0.005 -0.061 -2.150 -0.223 -0.218 -0.048 0.590 0.494 0.058

BasketballDrive -5.107 -2.904 -1.173 -4.769 -6.373 -5.992 -2.200 -6.153 -5.081 -1.532 0.988 -4.520
B BQTerrace -1.522 -1.256 -2.317 -1.574 -2.629 -5.096 -6.116 -2.733 -1.659 -0.243 -1.432 -1.625

Cactus -6.069 -3.644 -5.658 -6.184 -5.542 -1.212 1.075 -5.009 -6.072 -2.666 -5.149 -6.028
Kimono -3.784 -0.002 -2.982 -3.202 -4.998 -2.358 -8.161 -5.064 -3.822 1.229 -3.041 -3.065

ParkScene -1.550 3.125 -2.880 -1.340 -2.609 5.261 -5.825 -2.314 -1.460 2.974 -1.645 -1.210
BQMall -2.652 -3.778 -4.523 -2.832 -4.166 3.826 4.542 -3.429 -2.783 0.570 -2.944 -2.633

PartyScene -2.467 -2.415 -2.626 -2.441 -2.960 3.411 4.902 -2.258 -2.495 -1.410 -1.160 -2.317
C BasketballDrill -1.775 -2.202 -3.406 -1.901 -3.661 -3.218 -0.918 -3.488 -2.191 -3.433 -0.524 -2.151

RaceHorsesC -3.122 -2.373 -4.443 -3.108 -6.044 -2.498 -2.068 -5.589 -3.145 -1.947 -4.135 -3.083
FourPeople -4.376 -9.087 -14.66 -5.266 -4.365 -1.739 -3.907 -4.191 -4.583 -7.674 -12.83 -5.282

Johnny -5.287 -18.40 -19.84 -7.163 -5.276 -7.750 -4.454 -5.335 -5.130 -18.54 -20.66 -7.000
E KristenAndSara -5.327 -14.25 -18.47 -6.833 -5.443 -7.753 -7.570 -5.620 -5.297 -13.92 -17.18 -6.676

Vidyo1 -4.095 -8.241 -13.57 -4.970 -3.794 -7.234 -7.215 -4.045 -3.634 -4.933 -12.18 -4.317
AVERAGE -4.323 -4.364 -5.682 -4.407 -5.163 -2.878 -3.079 -4.879 -4.283 -3.343 -4.634 -4.235

from these images for chroma prediction comparison. The
results reveal that the Cb and Cr PSNR values of CCLM,
CIC and proposed CNNCP can reach (21.97dB, 20.87dB),
(21.94dB, 21.39dB), and (24.45dB, 25.75dB) on average,
respectively. The performance of proposed CNNCP is better
than the other two schemes.

In addition, the VVC test sequences are utilized as well. The
visual results are vividly shown in Fig. 8. These blocks are
collected from ParkRunning3, NebutaFestival, RaceHorcesC,
and BQMall. The resolution of all these sub-blocks presented
is 256 × 256. The chroma component of sub-block (128 ×
128) located at the bottom-right are predicted by the above
mentioned schemes, and the other sub-blocks located at the
above-left, above, and left are as same as the original. Here,
the prediction is performed in case of YCbCr 4:2:0 format,
and it is re-scaled to the same resolution as luma component
for visualization.

From Fig. 8, it can be found that the results of the proposed
CNNCP are more consist with the neighboring pixels, and
they are more close to the original in terms of visual quality.
Additionally, as shown in Table IV, from the perspective of
objective evaluation, the PSNR values of the proposed method
are higher than those of other two schemes, which indicates
that the proposed method achieves the best performance. The
reasons are that the spatial information and cross component
information are both considered in the proposed CNNCP.
The spatial information may provide the clues for chroma
prediction. However, it is absent in CIC. Although the spatial
information is used in CCLM, the number of neighboring
reference pixels is limited, and the simple linear model cannot
handle diverse contents.

B. Coding Performance Evaluation

In addition, the proposed method is evaluated with the state-
of-the-art chroma prediction methods, i.e., CCLM, MMLM,
MFLM, and MDLM. It is worth mentioning that CCLM and
MDLM have been incorporated in VTM 4.0, while CCLM,
MFLM and MDLM have been incorporated in BenchMark Set
(BMS) 1.0. Therefore, we implement the proposed CNNCP
into VTM 4.0 and BMS 1.0 for the comparison. Twenty one
test sequences, which are different from the training data, are
encoded under four QPs, including {22, 27, 32, 37}. The
experimental results are shown in Table V. The values of
BD-BR are calculated individually for Y, U, V, and YUV
components. The PSNR value of YUV component is the
weighted value of Y, U, and V components.

For the first case, CNNCP + CCLM vs. CCLM, it reduces
4.323%, 4.364%, 5.682%, and 4.407% bit rate on average for
Y, U, V, and YUV components, respectively. For the case
of CNNCP + MMLM + MFLM + CCLM vs. MMLM +
MFLM + CCLM, it can achieve 5.163%, 2.878%, 3.079%, and
4.879% bit rate reductions for Y, U, V, and YUV components,
respectively. For the last case, CNNCP + MDLM + CCLM
vs. MDLM + CCLM, 4.283%, 3.343%, 4.634%, and 4.235%
bit rate reductions for Y, U, V, and YUV components can
be achieved, respectively. Obviously, with the incorporated
CNNCP, it can further improve the coding performance. The
reasons are that CNNCP considers the spatial information
besides cross component information. Also, the influence of
luma down-sampling is taken into account with a neural
network. In addition, the outputs of CCLM are utilized as the
initialization, which may provide clues for chroma prediction.
In particular, the sequence of ParkRunning3 achieves the best
coding gain. The reason is that there are many trees shown
in the sequence of ParkRunning3, and the color of tree can
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TABLE VI
CODING PERFORMANCE IN TERMS OF BD-BR WITH SSIM METRIC.

[UNIT: %]

Class Sequence Y U V

B

BQTerrace -1.15 2.09 0.97
Cactus -6.54 -2.60 -1.73

BasketballDrive -4.78 5.48 3.20
Kimono -3.94 -1.29 4.74

C

PartyScene -2.78 0.76 -0.33
RaceHorsesC -3.69 -2.40 -2.59

BQMall -3.39 2.07 2.48
BasketballDrill -2.33 -2.59 1.04

E

FourPeople -4.88 -8.80 -2.62
KristenAndSara -5.50 -4.00 -2.63

Johnny -6.00 -7.64 -6.99
Vidyo1 -3.96 -7.52 -0.64

AVERAGE -4.08 -2.20 -0.43

be inferred according to the natural scene statistics. Thus,
the learned network can reduce the redundancy from the
perspective of prior statistics to some extent. In this work, the
luma gain and the chroma gain are similar. The reason is that
the linear models, including CCLM and MDLM, are enabled
in the designed video codec. The proposed scheme is required
to compete with them in terms of RD cost and the performance
is finally calculated with respect to the anchor codec equipped
with linear models (including CCLM and MDLM).

Besides the PSNR metric, the Structural Similarity Index
(SSIM) [50] is also adopted to evaluate the quality of re-
constructed sequences. From Table VI, it can be found that
the bit rate reduction can reach 4.08%, 2.20%, and 0.64%
on average for Y, U, and V components. The performance
of luma component is similar to that of PSNR metric, while
there is a gap for the chroma component. The reason is that
in the video codec the distortion is still represented by Mean
Squared Error (MSE) or Sum of Absolute Difference (SAD),
and the loss function of neural network is related to them.

In addition, the proposed CNNCP has been implemented on
the VTM 9.3 for performance evaluation, and the results are
illustrated in Table VII. It can be observed that the bit rate
savings on average can reach 3.453%, 4.149%, 4.594%, and
3.566% for Y, U, V and YUV components, which are a little
worse than those on the VTM 4.0. The reason is that more
advanced coding tools have been adopted on the VTM 9.3,
and there is overlap between them and the proposed CNNCP.

The distributions of CNNCP selected in the chroma pre-
diction are illustrated in Fig. 9 and Table VIII. Sequences of
BQMall (832×480), BasketballDrill (832×480), FourPeople
(1280 × 720), Vidyo1 (1280 × 720), Cactus (1920 × 1080),
Kimono (1920 × 1080), ParkRunning3 (3840 × 2160), and
DaylightRoad2 (3840× 2160) are encoded with QP 22 by the
proposed method. They are the first frames of each sequence
and all re-scaled to the same resolution for visualization.
The blocks with red color use CNNCP. It can be found
that abundant areas select CNNCP, which further provides
evidences regarding the advantage of CNNCP. Additionally,
it can be observed that most of blocks with CNNCP are small
blocks, including symmetric and asymmetric ones. The blocks
with CNNCP mainly locate at the texture area. From Table

TABLE VII
CODING PERFORMANCE UNDER PLATFORM OF VTM VERSION 9.3 IN

TERMS OF BD-BR. [UNIT: %]

Class Sequence Y U V YUV
Tango2 -2.893 -3.589 -0.907 -2.792

FoodMarket4 -8.275 -1.915 -2.783 -6.971
Campfire -0.045 -0.095 0.255 -0.026

A CatRobot1 -5.817 -7.049 -4.682 -5.922
DaylightRoad2 -1.503 1.138 -1.362 -1.435
ParkRunning3 -13.81 -12.38 -14.02 -13.59
MarketPlace -2.660 0.822 0.478 -2.277
RitualDance 0.105 0.203 0.098 0.116

BasketballDrive -4.272 -1.029 1.715 -3.706
B BQTerrace -1.088 -0.745 -2.334 -1.093

Cactus -5.335 -6.853 -10.76 -6.051
Kimono -3.441 -0.938 -2.393 -2.960

ParkScene -1.105 0.843 -1.556 -0.961
BQMall -2.116 -1.740 -2.682 -2.167

PartyScene -1.815 -2.333 -1.723 -1.808
C RaceHorsesC -2.171 0.373 0.477 -1.736

BasketballDrill -1.291 -3.487 -0.862 -1.416
FourPeople -3.389 -9.996 -12.42 -4.478

Johnny -4.161 -20.64 -17.19 -6.283
E KristenAndSara -4.297 -9.868 -10.41 -5.289

Vidyo1 -3.130 -7.869 -13.42 -4.050
AVERAGE -3.453 -4.149 -4.594 -3.566

VIII, it can be found that the percentage that selects CNNCP
can reach 12.4%, 19.9%, 31.7%, and 41.3% on average for
four different QP settings. The percentage increases as the
QP increases, which is related to the coding gains shown in
Table V. The larger percentage, the more coding gain can be
achieved.

C. Ablation Study

In the proposed architecture of CNNCP, the modules in-
clude luma down-sampling network, CCLM initialization and
chroma prediction network. To evaluate the effectiveness of
the architecture, the ablation study is conducted, including (1)
CNNCP with conventional down-sampling, (2) luma down-
sampling network generating 1 output and (3) CNNCP without
CCLM initialization. The first case aims to show whether the
luma down-sampling network is necessary; the second case
aims to show whether more luma down-sampling versions are
able to improve the performance; the third case aims to show
whether the CCLM initialization is able to enhance the chroma
prediction. In case of the luma down-sampling network being
absent, the conventional method is adopted instead, where the
down-sampled luma pixel value is calculated with four neigh-
boring luma pixels and the associated weights are identical.
In case of CNNCP without CCLM initialization, the to-be-
predicted chroma pixel values are set as half of the largest
pixel value, i.e., b(2k − 1)/2 + 0.5c, k is the bit depth. Two
sequences of every class are tested, and they are encoded
with four QPs, including {22, 27, 32, 37}. The original VTM
4.0 is utilized as the anchor. The results are shown in Table
IX in terms of BD-BR. The values of BD-BR are calculated
individually for Y, U, and V components.

With conventional luma down-sampling method, it can
achieve 1.733%, 4.302%, and 5.265% bit rate saving on
average for Y, U, and V components, respectively. For the case
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(a) BQMall (b) BasketballDrill (c) FourPeople (d) Vidyo1

(e) Cactus (f) Kimono (g) ParkRunning3 (h) DaylightRoad2

Fig. 9. CNNCP selected in the chroma prediction.

TABLE VIII
PERCENTAGE OF THE PROPOSED METHOD SELECTED. [UNIT: %]

Class Sequence QP
22 27 32 37

Tango2 4.48 8.92 19.6 33.6
FoodMarket4 3.79 10.4 20.1 31.5

Campfire 0.08 0.02 0.02 0.78
A CatRobot1 16.2 24.7 45.3 57.7

DaylightRoad2 10.5 18.6 45.1 54.8
ParkRunning3 32.7 36.8 46.8 58.1
MarketPlace 5.20 8.94 20.1 32.6
RitualDance 0.65 1.19 2.12 2.59

BasketballDrive 2.73 6.64 20.9 28.2
B BQTerrace 3.54 4.31 13.8 26.1

Cactus 28.8 38.0 46.8 56.9
Kimono 19.7 20.7 30.2 48.3

ParkScene 4.20 3.74 8.99 12.6
BQMall 5.05 12.6 33.2 44.4

PartyScene 4.23 9.12 16.5 21.4
C RaceHorsesC 1.19 1.27 3.82 5.86

BasketballDrill 2.29 5.49 20.7 36.2
FourPeople 31.8 61.2 79.9 90.5

Johnny 20.9 42.6 59.5 68.1
E KristenAndSara 30.0 47.7 64.0 78.5

Vidyo1 31.9 54.4 69.1 78.9
AVERAGE 12.4 19.9 31.7 41.3

of CNNCP with down-sampling network generating 1 output,
it reduces 4.090%, 4.358%, and 5.039% bit rate on average
for Y, U, and V components. If the CCLM initialization is
removed, it achieves 4.157%, 3.872%, and 4.408% bit rate
reduction on average for Y, U, and V components. For the
proposed CNNCP, it is able to achieve 5.876%, 6.268%, and
7.689% bit rate saving on average for Y, U, and V components.

From the results, it can be found that more coding gains
are achieved with the proposed CNNCP, as the luma down-
sampling network provides more down-sampled versions when
compared to the conventional down-sampling method, and
CCLM initialization can provide the clues for chroma predic-
tion. Therefore, the luma down-sampling network, more down-
sampled luma versions and CCLM initialization are effective
and can further improve the performance of chroma prediction.

D. Cross-Validation of CNNCP Under Different QP Settings

Additionally, we conduct experiments to validate the coding
performance for other QP settings. Here, two QP settings are
tested, including low QP setting {11, 16, 21, 26} and high
QP setting {33, 38, 43, 48}. It is conducted on the platform
of VTM 4.0, i.e., CNNCP + MDLM + CCLM vs. MDLM +
CCLM. However, it should be noted that the CNNCP model
is not changed, which is trained with QPs {22, 27, 32, 37}.
The results are shown in Table X.

For the low QP setting, the proposed method achieves
0.283%, 0.325% and 0.315% on average bit rate reductions
for luma and two chroma components. For the high QP
setting, the proposed method can reduce 2.539%, 9.105%
and 8.429% bit rate on average for luma and two chroma
components. It can be observed that more coding gains are
achieved as the QP increases. The reasons are that as the QP
increases, the reference pixels would be severely degraded,
and the number of them is limited for the conventional chroma
prediction, which limits the coding performance improvement.
By contrast, for the proposed method, more reference pixels
are adopted which can provide more useful information. In
addition, the coding distortion level (QP value) is adopted as
an input fed into the network, which may make the prediction
results more accurate.

E. Computational Complexity Analyses

Although the neural network incorporated into video codec
can achieve promising coding gains, it significantly increases
the computational complexity of encoding and decoding due
to the convolutional operation. The computational complexity
is calculated by,

∆T =
1

4

4∑
i=1

TΨ(QPi)

Tc(QPi)
, (7)

where Tc(QPi) is the coding/decoding time of the anchor
video codec under QPi, and TΨ(QPi) is the coding/decoding
time of the video codec equipped with proposed method under
QPi. The results of computational complexity are illustrated
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TABLE IX
CODING PERFORMANCE OF ABLATION STUDY IN TERMS OF BD-BR. [UNIT: %]

Class Sequence
CNNCP with conventional Luma down-sampling CNNCP without CCLM Proposed CNNCPluma down-sampling network generating 1 output initialization

Y U V Y U V Y U V Y U V

A CatRobot1 -2.738 -3.737 -3.517 -6.433 -6.824 -5.346 -6.110 -5.791 -5.129 -8.724 -9.846 -6.638
ParkRunning3 -1.406 -1.536 -1.495 -7.855 -6.790 -6.584 -9.862 -8.060 -8.001 -15.03 -12.44 -12.96

B BQTerrace -0.024 0.123 -1.338 -0.768 1.395 0.141 -0.168 1.057 0.042 -1.659 -0.243 -1.432
Cactus -3.698 -4.040 -8.314 -4.670 -1.183 -1.408 -4.327 -1.122 -0.902 -6.072 -2.666 -5.149

C PartyScene -0.189 -0.062 0.015 -1.403 2.137 1.432 -1.613 2.209 1.579 -2.495 -1.410 -1.160
RaceHorsesC -0.091 0.031 1.631 -2.311 0.402 0.556 -2.546 0.062 -1.432 -3.145 -1.947 -4.135

E FourPeople -3.481 -7.701 -9.571 -4.230 -8.874 -11.15 -3.830 -6.741 -9.730 -4.583 -7.674 -12.83
KristenAndSara -4.234 -17.49 -19.53 -5.052 -15.13 -17.95 -4.799 -12.59 -14.09 -5.297 -13.92 -17.18

AVERAGE -1.733 -4.302 -5.265 -4.090 -4.358 -5.039 -4.157 -3.872 -4.408 -5.876 -6.268 -7.689

in Table XI, where the coding experiments are all conducted
on the platform of CPU, and the original VTM is utilized as
the anchor. It should be noted that the multi-thread speedup
is not used in the coding experiment. For the encoding, the
computational complexity only increases 16% on average.
However, the computational complexity of decoding increases
834% on average. The more blocks select the proposed method
of CNNCP, the more decoding time will be consumed. From
Tables V and XI, it can be found that the sequence of
ParkRunning3 achieves the best coding gain, i.e., 14.03% bit
rate saving in case of YUV component, but the running time
of its decoding is 31.5 times compared to the original VTM.
In addition, it can be observed that limited runtime is spent
on the module of model inference.

At present, the computational complexity is still a problem
for the deep learning based video coding. However, the de-
velopment of the advanced coding tools cannot be impeded
by the complexity issues. We sincerely believe that the fast
algorithms and advanced hardware developed in future could
make the deep learning based video coding applied in real
scenarios.

VI. CONCLUSIONS

In this paper, a deep learning based chroma prediction
method for intra coding has been proposed. Different from the
conventional angular and linear models, the chroma prediction
is performed with deep neural networks. The sophisticated
neural networks make it possible to transfer from the given
gray version to the colorful version in a data-driven manner,
where the spatial information and cross component informa-
tion are both fully considered. To further improve the perfor-
mance, the coding distortion level is also fed to the neural
network, and the results of CCLM are adopted for the chroma
initialization. In addition, the RDO is performed to select
the better prediction strategy from the original method and
CNNCP with an additional binary flag. Extensive experimental
results demonstrate the superior performance of the proposed
scheme compared to the state-of-the-art chroma prediction
methods.
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